Zusammenfassung
Eine einschichtige Lage von Epithelzellen kleidet den Gastrointestinaltrakt höherer
Lebewesen aus und trennt verschiedenste Antigene im Lumen des Darmes von den Immunzellen
des Wirtsorganismus in der Lamina propria. Störungen dieser epithelialen Barriere,
wie sie beispielsweise im Rahmen von chronisch entzündlichen Darmerkrankungen, von
Darmischämien oder infolge bakterieller Infektionen beobachtet werden, induzieren
eine ausgeprägte Entzündungsreaktion, die – primär protektiv – überschießen und den
Wirtsorganismus dann gefährden kann. Deshalb führen epitheliale Verletzungen zur raschen
Induktion einer lokalen Wundheilungsantwort, deren Ziel es ist, die Kontinuität der
Epitheldecke und damit die Barrierefunktion wiederherzustellen. Teil dieser Schutzmechanismen
ist neben der Epithelzell-Proliferation auch die koordinierte Migration von Epithelzellen
in das Wundgebiet bis zum Wundschluss. Zahlreiche Faktoren modulieren diese Prozesse.
Sie werden von den Epithelzellen selbst, von Zellen der Lamina propria wie auch von
Mikroorganismen im Darmlumen synthetisiert. Dieser Übersichtsartikel fasst die im
Rahmen neu entwickelter Ansätze jüngst erweiterten Erkenntnisse zur zellulären Signaltransduktion
und der auf sie einwirkenden Faktoren im Rahmen der gastrointestinalen epithelialen
Wundheilung und Homeostase kurz zusammen.
Abstract
The gastrointestinal epithelium functions as an important physical barrier that separates
the rich, diverse, and potentially immunogenic luminal content from the underlying
mucosal immune system. In pathological situations such as inflammatory bowel disease,
ischemic/hypoxic episodes and bacterial infection, insults to the intestinal epithelium
threaten the integrity of the mucosal barrier and represent a huge challenge for the
host. During episodes of epithelial injury and barrier breakdown, the host initiates
a rapid wound healing response aimed at resealing the gap region and reestablishing
homeostasis. This response named ”restitution” involves migration of epithelial cells
toward the injured regions, as well as epithelial cell proliferation until the gap
is closed and the barrier function is reestablished. These biological processes are
influenced by a variety of factors derived from the gastrointestinal microenvironment,
including host epithelial and lamina propria cells, as well as the microbiota, and
the dietary and non-dietary components present in the gastrointestinal lumen. In this
manuscript, we will review both host signaling events and luminal factors that influence
the wound healing response and have an impact on host homeostasis.
Schlüsselwörter
gastrointestinale Epithelzellen - Wundheilung - Schutzmechanismen - Signaltransduktion
Key words
gastrointestinal epithelium - wound healing - microbial host interaction - cell signaling
References
- 1
Packey C D, Sartor R B.
Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial
killing in inflammatory bowel diseases.
Curr Opin Infect Dis.
2009;
22
292-301
- 2
Packey C D, Sartor R B.
Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory
defects in the pathogenesis of inflammatory bowel diseases.
J Intern Med.
2008;
263
597-606
- 3
Sartor R B.
Microbial influences in inflammatory bowel diseases.
Gastroenterology.
2008;
134
577-594
- 4
Sartor R B.
Mechanisms of Disease: pathogenesis of Crohn’s disease and ulcerative colitis.
Nat Clin Pract Gastroenterol Hepatol.
2006;
3
390-407
- 5
Hermiston M L, Gordon J I.
Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin.
Science.
1995;
270
1203-1207
- 6
Dieleman L A, Palmen M J, Akol H. et al .
Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized
by Th1 and Th2 cytokines.
Clin Exp Immunol.
1998;
114
385-391
- 7
Neurath M F, Fuss I, Kelsall B L. et al .
Antibodies to interleukin 12 abrogate established experimental colitis in mice.
J Exp Med.
1995;
182
1281-1290
- 8
Seno H, Miyoshi H, Brown S L. et al .
Efficient colonic mucosal wound repair requires Trem2 signaling.
Proc Natl Acad Sci U S A.
2009;
106
256-261
- 9
Dignass A U.
Mechanisms and modulation of intestinal epithelial repair.
Inflamm Bowel Dis.
2001;
7
68-77
- 10
Rieder F, Brenmoehl J, Leeb S. et al .
Wound healing and fibrosis in intestinal disease.
Gut.
2007;
56
130-139
- 11
Ciacci C, Lind S E, Podolsky D K.
Transforming growth factor beta regulation of migration in wounded rat intestinal
epithelial monolayers.
Gastroenterology.
1993;
105
93-101
- 12
Dignass A U, Podolsky D K.
Cytokine modulation of intestinal epithelial cell restitution: central role of transforming
growth factor beta.
Gastroenterology.
1993;
105
1323-1332
- 13
Dignass A U, Tsunekawa S, Podolsky D K.
Fibroblast growth factors modulate intestinal epithelial cell growth and migration.
Gastroenterology.
1994;
106
1254-1262
- 14
Wilson A J, Gibson P R.
Epithelial migration in the colon: filling in the gaps.
Clin Sci.
1997;
93
97-108
- 15
Kato K, Chen M C, Nguyen M. et al .
Effects of growth factors and trefoil peptides on migration and replication in primary
oxyntic cultures.
Am J Physiol.
1999;
276
G1105-G1116
- 16
Taupin D, Podolsky D K.
Trefoil factors: initiators of mucosal healing.
Nat Rev Mol Cell Biol.
2003;
4
721-732
- 17
Egan L J, Lecea de A, Lehrman E D. et al .
Nuclear factor-kappa B activation promotes restitution of wounded intestinal epithelial
monolayers.
Am J Physiol Cell Physiol.
2003;
285
C1028-C1035
- 18
Karrasch T, Steinbrecher K A, Allard B. et al .
Wound-induced p38 MAPK-dependent histone H 3 phosphorylation correlates with increased
COX-2 expression in enterocytes.
J Cell Physiol.
2006;
207
809-815
- 19
Jobin C, Sartor R B.
The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection.
Am J Physiol Cell Physiol.
2000;
278
C451-C462
- 20
Karrasch T, Jobin C.
NF-kappaB and the intestine: friend or foe?.
Inflamm Bowel Dis.
2008;
14
114-124
- 21
Dobrovolskaia M A, Kozlov S V.
Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership.
Curr Cancer Drug Targets.
2005;
5
325-344
- 22
Strauch E D, Bass B L, Rao J N. et al .
NF-kappaB regulates intestinal epithelial cell and bile salt-induced migration after
injury.
Ann Surg.
2003;
237
494-501
- 23
Shindo K, Iizuka M, Sasaki K. et al .
Sucralfate prevents the delay of wound repair in intestinal epithelial cells by hydrogen
peroxide through NF-kappaB pathway.
J Gastroenterol.
2006;
41
450-461
- 24
Morteau O, Morham S G, Sellon R. et al .
Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1
or cyclooxygenase-2.
J Clin Invest.
2000;
105
469-478
- 25
Kabashima K, Saji T, Murata T. et al .
The prostaglandin receptor EP 4 suppresses colitis, mucosal damage and CD 4 cell activation
in the gut.
J Clin Invest.
2002;
109
883-893
- 26
Nitta M, Hirata I, Toshina K. et al .
Expression of the EP 4 prostaglandin E 2 receptor subtype with rat dextran sodium
sulphate colitis: colitis suppression by a selective agonist, ONO-AE1 – 329.
Scand J Immunol.
2002;
56
66-75
- 27
Dieckgraefe B K, Weems D M, Santoro S A. et al .
ERK and p38 MAP kinase pathways are mediators of intestinal epithelial wound-induced
signal transduction.
Biochem Biophys Res Commun.
1997;
233
389-394
- 28
Goke M, Kanai M, Lynch-Devaney K. et al .
Rapid mitogen-activated protein kinase activation by transforming growth factor alpha
in wounded rat intestinal epithelial cells.
Gastroenterology.
1998;
114
697-705
- 29
Frey M R, Golovin A, Polk D B.
Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src
family kinase-dependent p38 MAPK signaling.
J Biol Chem.
2004;
279
44 513-44 521
- 30
Frey M R, Dise R S, Edelblum K L. et al .
p38 kinase regulates epidermal growth factor receptor downregulation and cellular
migration.
EMBO J.
2006;
25
5683-5692
- 31
Fu X B, Yang Y H, Sun T Z. et al .
Rapid mitogen-activated protein kinase by basic fibroblast growth factor in rat intestine
after ischemia/reperfusion injury.
World J Gastroenterol.
2003;
9
1312-1317
- 32
Fu X B, Xing F, Yang Y H. et al .
Activation of phosphorylating-p38 mitogen-activated protein kinase and its relationship
with localization of intestinal stem cells in rats after ischemia-reperfusion injury.
World J Gastroenterol.
2003;
9
2036-2039
- 33
Nishimura T, Andoh A, Nishida A. et al .
FR167653, a p38 mitogen-activated protein kinase inhibitor, aggravates experimental
colitis in mice.
World J Gastroenterol.
2008;
14
5851-5856
- 34
ten Hove T, Blink van den B, Pronk I. et al .
Dichotomal role of inhibition of p38 MAPK with SB 203 580 in experimental colitis.
Gut.
2002;
50
507-512
- 35
Bakin A V, Rinehart C, Tomlinson A K. et al .
p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic
transdifferentiation and cell migration.
J Cell Sci.
2002;
115
3193-3206
- 36
Bates R C, Mercurio A M.
Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of
human colonic organoids.
Mol Biol Cell.
2003;
14
1790-1800
- 37
Karrasch T, Allard B, Jobin C.
PI3K-dependent GSK3 beta phosphorylation is implicated in the intestinal epithelial
cell wound-healing response.
Gastroenterology.
2006;
130
A490-A491
- 38
Novak A, Dedhar S.
Signaling through beta-catenin and Lef/Tcf.
Cell Mol Life Sci.
1999;
56
523-537
- 39
Kolligs F T, Bommer G, Goke B.
Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis.
Digestion.
2002;
66
131-144
- 40
Bianchi M, De Lucchini S, Marin O. et al .
Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP 1 during
cell spreading and migration.
Biochem J.
2005;
391
359-370
- 41
Xu K P, Ding Y, Ling J. et al .
Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial
cells.
Invest Ophthalmol Vis Sci.
2004;
45
813-820
- 42
Tokumaru S, Higashiyama S, Endo T. et al .
Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte
migration in cutaneous wound healing.
J Cell Biol.
2000;
151
209-220
- 43
Beck P L, Rosenberg I M, Xavier R J. et al .
Transforming growth factor-beta mediates intestinal healing and susceptibility to
injury in vitro and in vivo through epithelial cells.
Am J Pathol.
2003;
162
597-608
- 44
Wachs F P, Krieg R C, Rodrigues C M. et al .
Bile salt-induced apoptosis in human colon cancer cell lines involves the mitochondrial
transmembrane potential but not the CD 95 (Fas/Apo-1) receptor.
Int J Colorectal Dis.
2005;
20
103-113
- 45
Owen C R, Yuan L, Basson M D.
Smad3 knockout mice exhibit impaired intestinal mucosal healing.
Lab Invest.
2008;
88
1101-1109
- 46
Delaney J R, Mlodzik M.
TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development
and immunity.
Cell Cycle.
2006;
5
2852-2855
- 47
Banerjee A, Gerondakis S.
Coordinating TLR-activated signaling pathways in cells of the immune system.
Immunol Cell Biol.
2007;
85
420-424
- 48
Adhikari A, Xu M, Chen Z J.
Ubiquitin-mediated activation of TAK1 and IKK.
Oncogene.
2007;
26
3214-3226
- 49
Kajino-Sakamoto R, Inagaki M, Lippert E. et al .
Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development
of ileitis and colitis.
J Immunol.
2008;
181
1143-1152
- 50
Kim J Y, Kajino-Sakamoto R, Omori E. et al .
Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against
chemical-induced colitis.
PLoS ONE.
2009;
4
e4561
- 51
Burgess A W.
EGFR family: structure physiology signalling and therapeutic targets.
Growth Factors.
2008;
26
263-274
- 52
Fiske W H, Threadgill D, Coffey R J.
ERBBs in the gastrointestinal tract: recent progress and new perspectives.
Exp Cell Res.
2009;
315
583-601
- 53
Frey M R, Edelblum K L, Mullane M T. et al .
The ErbB4 growth factor receptor is required for colon epithelial cell survival in
the presence of TNF.
Gastroenterology.
2009;
136
217-226
- 54
El-Assal O N, Besner G E.
HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI 3K/Akt and
MEK/ERK1 / 2 activation.
Gastroenterology.
2005;
129
609-625
- 55
Dise R S, Frey M R, Whitehead R H. et al .
Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol
3-kinase to promote colonic epithelial cell migration.
Am J Physiol Gastrointest Liver Physiol.
2008;
294
G276-G285
- 56
Gayer C P, Chaturvedi L S, Wang S. et al .
Delineating the signals by which repetitive deformation stimulates intestinal epithelial
migration across fibronectin.
Am J Physiol Gastrointest Liver Physiol.
2009;
296
G876-G885
- 57
Durer U, Hartig R, Bang S. et al .
TFF3 and EGF induce different migration patterns of intestinal epithelial cells in
vitro and trigger increased internalization of E-cadherin.
Cell Physiol Biochem.
2007;
20
329-346
- 58
Hoffmann W.
Trefoil factor family (TFF) peptides: regulators of mucosal regeneration and repair,
and more.
Peptides.
2004;
25
727-730
- 59
Dignass A, Lynch-Devaney K, Kindon H. et al .
Trefoil peptides promote epithelial migration through a transforming growth factor
beta-independent pathway.
J Clin Invest.
1994;
94
376-383
- 60
Qureshi F G, Leaphart C, Cetin S. et al .
Increased expression and function of integrins in enterocytes by endotoxin impairs
epithelial restitution.
Gastroenterology.
2005;
128
1012-1022
- 61
Strauch E D, Wang J Y, Bass B L.
Bile salt stimulates intestinal epithelial cell migration through TGFbeta after wounding.
J Surg Res.
2001;
97
49-53
- 62
Strauch E D, Yamaguchi J, Bass B L. et al .
Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced
expression of transforming growth factor-beta.
J Am Coll Surg.
2003;
197
974-984
- 63
Muhlbauer M, Allard B, Bosserhoff A K. et al .
Differential effects of deoxycholic acid and taurodeoxycholic acid on NF{kappa}B signal
transduction and IL-8 gene expression in colonic epithelial cells.
Am J Physiol Gastrointest Liver Physiol.
2004;
286
G1000-G1008
- 64
Yamaguchi N, Argueta J G, Masuhiro Y. et al .
Adiponectin inhibits Toll-like receptor family-induced signaling.
FEBS Lett.
2005;
579
6821-6826
- 65
Toledo A, Yamaguchi J, Wang J Y. et al .
Taurodeoxycholate stimulates intestinal cell proliferation and protects against apoptotic
cell death through activation of NF-kappaB.
Dig Dis Sci.
2004;
49
1664-1671
- 66
Yamaguchi J, Toledo A, Bass B L. et al .
Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc
expression.
Surgery.
2004;
135
215-221
- 67
Roediger W E.
Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man.
Gut.
1980;
21
793-798
- 68
Huang N, Katz J P, Martin D R. et al .
Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone
hyperacetylation.
Cytokine.
1997;
9
27-36
- 69
Kamitani H, Ikawa H, Hsi L C. et al .
Regulation of 12-lipoxygenase in rat intestinal epithelial cells during differentiation
and apoptosis induced by sodium butyrate.
Arch Biochem Biophys.
1999;
368
45-55
- 70
Fusunyan R D, Quinn J J, Fujimoto M. et al .
Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells
through histone acetylation.
Mol Med.
1999;
5
631-640
- 71
Wilson A J, Gibson P R.
Short-chain fatty acids promote the migration of colonic epithelial cells in vitro.
Gastroenterology.
1997;
113
487-496
- 72
Wong J M, Souza de R, Kendall C W. et al .
Colonic health: fermentation and short chain fatty acids.
J Clin Gastroenterol.
2006;
40
235-243
- 73
Wright N A, Hoffmann W, Otto W R. et al .
Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration
and cancer.
FEBS Lett.
1997;
408
121-123
- 74
Playford R J, Marchbank T, Chinery R. et al .
Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration.
Gastroenterology.
1995;
108
108-116
- 75
Babyatsky M W, deBeaumont M, Thim L. et al .
Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury
in rats.
Gastroenterology.
1996;
110
489-497
- 76
Mashimo H, Wu D C, Podolsky D K. et al .
Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor.
Science.
1996;
274
262-265
- 77
Playford R J, Marchbank T, Goodlad R A. et al .
Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance
to intestinal damage.
Proc Natl Acad Sci U S A.
1996;
93
2137-2142
- 78
Vandenbroucke K, Hans W, Van Huysse J. et al .
Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents
and heals acute colitis in mice.
Gastroenterology.
2004;
127
502-513
- 79
Kjellev S, Thim L, Pyke C. et al .
Cellular localization, binding sites, and pharmacologic effects of TFF3 in experimental
colitis in mice.
Dig Dis Sci.
2007;
52
1050-1059
- 80
Podolsky D K, Gerken G, Eyking A. et al .
Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3
deficiency.
Gastroenterology.
2009;
137
209-220
- 81
Steidler L, Hans W, Schotte L. et al .
Treatment of murine colitis by Lactococcus lactis secreting interleukin-10.
Science.
2000;
289
1352-1355
- 82
Steidler L, Neirynck S, Huyghebaert N. et al .
Biological containment of genetically modified Lactococcus lactis for intestinal delivery
of human interleukin 10.
Nat Biotechnol.
2003;
21
785-789
- 83
Nagy T A, Frey M R, Yan F. et al .
Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol
3-kinase signaling.
J Infect Dis.
2009;
199
641-651
- 84
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F. et al .
Recognition of commensal microflora by toll-like receptors is required for intestinal
homeostasis.
Cell.
2004;
118
229-241
- 85
Pull S L, Doherty J M, Mills J C. et al .
Activated macrophages are an adaptive element of the colonic epithelial progenitor
niche necessary for regenerative responses to injury.
Proc Natl Acad Sci U S A.
2005;
102
99-104
- 86
Brown S L, Riehl T E, Walker M R. et al .
Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial
proliferation during injury.
J Clin Invest.
2007;
117
258-269
- 87
Tarnawski A, Hollander D, Stachura J. et al .
Vascular and microvascular changes – key factors in the development of acetic acid-induced
gastric ulcers in rats.
J Clin Gastroenterol.
1990;
12 (Suppl 1)
S148-S157
- 88
Tarnawski A, Hollander D, Krause W J. et al .
”Healed” experimental gastric ulcers remain histologically and ultrastructurally abnormal.
J Clin Gastroenterol.
1990;
12 (Suppl 1)
S139-S147
- 89
Russo J M, Florian P, Shen L. et al .
Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial
purse-string wound closure.
Gastroenterology.
2005;
128
987-1001
- 90
Williams R M, Zipfel W R, Webb W W.
Multiphoton microscopy in biological research.
Curr Opin Chem Biol.
2001;
5
603-608
- 91
Xu C, Zipfel W, Shear J B. et al .
Multiphoton fluorescence excitation: new spectral windows for biological nonlinear
microscopy.
Proc Natl Acad Sci U S A.
1996;
93
10763-10768
- 92
Zipfel W R, Williams R M, Christie R. et al .
Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence
and second harmonic generation.
Proc Natl Acad Sci U S A.
2003;
100
7075-7080
- 93
Tirlapur U K, Konig K, Peuckert C. et al .
Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species
in mammalian cells leading to apoptosis-like death.
Exp Cell Res.
2001;
263
88-97
- 94
Starodub O T, Demitrack E S, Baumgartner H K. et al .
Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric
epithelium.
Am J Physiol Cell Physiol.
2008;
294
C223-C232
- 95
Watson A J, Chu S, Sieck L. et al .
Epithelial barrier function in vivo is sustained despite gaps in epithelial layers.
Gastroenterology.
2005;
129
902-912
- 96
Bullen T F, Forrest S, Campbell F. et al .
Characterization of epithelial cell shedding from human small intestine.
Lab Invest.
2006;
86
1052-1063
- 97
Moyer R A, Wendt M K, Johanesen P A. et al .
Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution
in model intestinal epithelia.
Lab Invest.
2007;
87
807-817
- 98
Amali A A, Rekha R D, Lin C J. et al .
Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis.
J Biomed Sci.
2006;
13
225-232
- 99
Bates J M, Mittge E, Kuhlman J. et al .
Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation.
Dev Biol.
2006;
297
374-386
- 100
Cvejic A, Hall C, Bak-Maier M. et al .
Analysis of WASp function during the wound inflammatory response – live-imaging studies
in zebrafish larvae.
J Cell Sci.
2008;
121
3196-3206
- 101
Feitsma H, Cuppen E.
Zebrafish as a cancer model.
Mol Cancer Res.
2008;
6
685-694
- 102
Flores M V, Hall C J, Davidson A J. et al .
Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of
mammalian Cdx2.
Gastroenterology.
2008;
135
1665-1675
- 103
Grabher C, Look A T.
Fishing for cancer models.
Nat Biotechnol.
2006;
24
45-46
- 104
Park S W, Davison J M, Rhee J. et al .
Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish
exocrine pancreas.
Gastroenterology.
2008;
134
2080-2090
- 105
Trede N S, Langenau D M, Traver D. et al .
The use of zebrafish to understand immunity.
Immunity.
2004;
20
367-379
- 106
Sar A M, Appelmelk B J, Vandenbroucke-Grauls C M. et al .
A star with stripes: zebrafish as an infection model.
Trends Microbiol.
2004;
12
451-457
- 107
Wallace K N, Akhter van der S, Smith E M. et al .
Intestinal growth and differentiation in zebrafish.
Mech Dev.
2005;
122
157-173
- 108
Yang J, Chan C Y, Jiang B. et al .
hnRNP I Inhibits notch signaling and regulates intestinal epithelial homeostasis in
the zebrafish.
PLoS Genet.
2009;
5
e1000363
- 109
Zhang Y, Bai X T, Zhu K Y. et al .
In vivo interstitial migration of primitive macrophages mediated by JNK-matrix metalloproteinase
13 signaling in response to acute injury.
J Immunol.
2008;
181
2155-2164
- 110
Keller P J, Schmidt A D, Wittbrodt J. et al .
Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy.
Science.
2008;
322
1065-1069
- 111
Stoletov K, Montel V, Lester R D. et al .
High-resolution imaging of the dynamic tumor cell vascular interface in transparent
zebrafish.
Proc Natl Acad Sci U S A.
2007;
104
17406-17411
- 112
Helmchen F, Denk W.
Deep tissue two-photon microscopy.
Nat Methods.
2005;
2
932-940
- 113
Brustein E, Marandi N, Kovalchuk Y. et al .
”In vivo” monitoring of neuronal network activity in zebrafish by two-photon Ca(2
+ ) imaging.
Pflugers Arch.
2003;
446
766-773
- 114
Kirby B B, Takada N, Latimer A J. et al .
In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during
zebrafish development.
Nat Neurosci.
2006;
9
1506-1511
- 115
Pack M, Solnica-Krezel L, Malicki J. et al .
Mutations affecting development of zebrafish digestive organs.
Development.
1996;
123
321-328
- 116
Abreu M T, Fukata M, Arditi M.
TLR signaling in the gut in health and disease.
J Immunol.
2005;
174
4453-4460
- 117
Neurath M F, Pettersson S, Meyer zum Buschenfelde K H. et al .
Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit
of NF-kappa B abrogates established experimental colitis in mice.
Nat Med.
1996;
2
998-1004
- 118
Chen L W, Egan L, Li Z W. et al .
The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation
but increased local injury following intestinal ischemia-reperfusion.
Nat Med.
2003;
9
575-581
- 119
Karrasch T, Kim J S, Jang B I. et al .
The Flavonoid luteolin worsens chemical-induced colitis in NF-kappaB transgenic mice
through blockade of NF-kappaB-dependent protective molecules.
PLoS ONE.
2007;
2
e596
- 120
Joo Y E, Karrasch T, Muhlbauer M. et al .
Tomato lycopene extract prevents lipopolysaccharide-induced NF-kappaB signaling but
worsens dextran sulfate sodium-induced colitis in NF-kappaBEGFP mice.
PLoS ONE.
2009;
4
e4562
- 121
Merritt A J, Potten C S, Kemp C J. et al .
The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal
tract of normal and p53-deficient mice.
Cancer Res.
1994;
54
614-617
- 122
Potten C S.
Interleukin-11 protects the clonogenic stem cells in murine small-intestinal crypts
from impairment of their reproductive capacity by radiation.
Int J Cancer.
1995;
62
356-361
- 123
Stallion A, Kou T D, Miller K A. et al .
IL-10 is not protective in intestinal ischemia reperfusion injury.
J Surg Res.
2002;
105
145-152
- 124
Zhao H, Montalto M C, Pfeiffer K J. et al .
Murine model of gastrointestinal ischemia associated with complement-dependent injury.
J Appl Physiol.
2002;
93
338-345
- 125
Morris G P, Wallace J L.
The roles of ethanol and of acid in the production of gastric mucosal erosions in
rats.
Virchows Arch B Cell Pathol Incl Mol Pathol.
1981;
38
23-38
- 126
Hingson D J, Ito S.
Effect of aspirin and related compounds on the fine structure of mouse gastric mucosa.
Gastroenterology.
1971;
61
156-177
- 127
Sigthorsson G, Simpson R J, Walley M. et al .
COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory
drug enteropathy in mice.
Gastroenterology.
2002;
122
1913-1923
- 128
Berg D J, Zhang J, Weinstock J V. et al .
Rapid development of colitis in NSAID-treated IL-10-deficient mice.
Gastroenterology.
2002;
123
1527-1542
- 129
Watanabe T, Higuchi K, Kobata A. et al .
Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like
receptor 4 dependent.
Gut.
2008;
57
181-187
Dr. Thomas Karrasch
Department of Internal Medicine I, University Hospital, University of Regensburg
Franz-Josef-Strauß-Allee 11
93042 Regensburg
Phone: ++ 49/9 41/9 44 70 10
Fax: ++ 49/9 41/9 44 70 73
Email: thomas.karrasch@klinik.uni-regensburg.de